ABSTRACT

ISSUE: The individual insurance market functions better with larger numbers of people enrolled. Higher enrollment makes it easier for insurers to set premiums that reflect their expected health care costs and allows them to spread administrative expenses over a larger base. Further, incentivizing healthy individuals to enroll may lead to lower average premiums.

GOALS: To analyze six policy options for expanding enrollment:
1) enhancing tax credits for young adults; 2) increasing tax credit amounts; 3) extending credits to more people; 4) both increasing and extending credits; 5) adding standard reinsurance; and 6) adding generous reinsurance.

METHODS: Analysis through RAND's COMPARE microsimulation model, which combines economic theory, nationally representative data, and experiential data to project consumer and business responses to policy changes.

KEY FINDINGS AND CONCLUSIONS: Options to enhance, increase, or extend tax credits could increase total enrollment in the individual market by 1.0 million to 3.4 million and the insured population by 800,000 to 2.6 million. Adding reinsurance could increase enrollment by 1.2 million to 5.4 million and total coverage by 900,000 to 3.4 million. Costs for these options range from $2.5 billion to $18.8 billion, with those policies producing the biggest coverage gains generally requiring the biggest public investments.

KEY TAKEAWAYS
- Policymakers have many options for expanding health coverage and broadening the insurance risk pool in the individual market.
- Enhancing tax credits for young adults is an inexpensive way to expand coverage but yields only about 800,000 newly covered individuals.
- Expanded reinsurance could extend coverage to many more people but requires a larger public investment.

The Commonwealth Fund
BACKGROUND

Approximately 22 million Americans receive health insurance through the individual insurance market, which includes federally subsidized health plans sold through the Affordable Care Act (ACA) marketplaces and other, unsubsidized plans subject to ACA regulations.\(^1\) Though much smaller than other parts of the health insurance market, the individual market serves a critical function by providing insurance for those with no access to job-based or public coverage.\(^2\) In part because of its small size, it has always faced challenges, including susceptibility to adverse selection and year-to-year variation in enrollment.\(^3\) It also has been disproportionately affected by the ACA, which changed regulations governing how individual-market insurers can price and sell their products. In recent years, many regions of the country have seen rising premiums and declining insurer participation.

Policymakers are seeking ways to shore up the individual insurance market and ensure coverage is affordable.\(^4\) Increasing the size of the individual-market risk pool is key: when more people enroll, it is easier for insurers to accurately set premiums and spread their administrative costs over a larger base. Further, people currently on the fence about enrolling tend to be those whose entry into the risk pool is most likely to lead to reduced premiums for everyone: individuals who are healthier than average and therefore use less health care.

In this report, we analyze several options to expand enrollment in the individual insurance market and thereby bring coverage to more Americans. We focus on options that have already been proposed by policymakers, and that would make the individual market more financially attractive to consumers (for example by reducing premiums or expanding access to tax credits). These options include:

- Increasing the generosity of APTCs for all currently eligible enrollees by reducing the required contribution for a benchmark plan
- Extending APTCs to those with incomes above 400 percent of the federal poverty level (FPL)
- Both increasing the generosity of APTCs and extending tax-credit eligibility to those with incomes above 400 percent of FPL
- Implementing some type of reinsurance program for insurers, which would pay some or all the costs of unusually high claims. Because reinsurance would be funded through fees on individual and employer insurance plans (as in the transitional reinsurance program available during the early years of the ACA), these policy options would not entail costs to the federal government.

We estimate how each of these policies would affect four outcomes: total insurance coverage in the United States, enrollment by source of coverage, individual-market premiums, and the federal deficit. We have previously analyzed several of these policy options.\(^5\) This analysis updates our prior work, standardizes reported outcomes so that they can be compared, and adds reinsurance, a policy we have not previously analyzed. We estimate all outcomes for calendar year 2020. Exhibit 1 describes each of the policies. We conducted the analysis using RAND’s COMPARE microsimulation model, which uses economic theory and data to estimate the effect of health policy changes on insurance coverage and health care spending. For all analyses, we assumed that the federal government would continue to pay cost-sharing reductions (CSRs) — the subsidies that reduce out-of-pocket copays, coinsurance, and deductibles for low-income marketplace enrollees. We also assumed that the individual mandate would continue to be enforced.\(^6\) When developing the baseline for estimating the effect of recent health reform legislation, the Congressional Budget Office also assumed enforcement of the individual mandate and payment of CSRs.\(^7\) The model and methods are described in more detail in Appendix A.
Exhibit 1. Policies to Expand Enrollment in the Individual Market

<table>
<thead>
<tr>
<th>Policy</th>
<th>Description</th>
<th>Policy objectives</th>
</tr>
</thead>
</table>
| **Enhance APTCs for young adults** | • Adults ages 19 to 30 who are eligible for APTCs would get a $50 enhancement to their tax credit each month
• APTC-eligible adults ages 31 to 34 would get a smaller enhancement, declining to $0 at age 35
• Credit enhancements are invariant to income or other factors, such as geography
• Total credit (APTC plus enhancement) cannot exceed price of second-lowest-cost silver plan | • Encourage enrollment of young adults
• Improve risk pool |
| **Increase generosity of APTCs for all eligible enrollees** | • Under current law, APTCs are equal to price of second-lowest-cost silver plan available to enrollee, minus applicable percentage contribution that varies with income^a
• In 2020, applicable percentage contributions will range from an estimated 2.09 percent to 9.95 percent of income
• Proposed policy would reduce maximum applicable percentage contributions by factor of 0.8543; they would range from 1.79 percent to 8.5 percent of income | • Make insurance more affordable for people currently tax-credit-eligible
• Encourage tax-credit-eligible individuals to enroll |
| **Extend premium tax credits to those with incomes above 400 percent of FPL** | • Would allow people with incomes above 400 percent of FPL to receive tax credits if they had no affordable offer of coverage from another source
• Tax credit would equal price of second-lowest-cost silver plan available, minus maximum applicable percentage contribution under current law (9.95% of income in 2020)^b | • Eliminate “tax credit cliff,” in which people abruptly lose access to tax credits when income exceeds 400 percent of FPL
• Make insurance more affordable |
| **Both increase the generosity of APTCs and extend tax-credit eligibility to those with incomes above 400 percent of FPL** | • Applicable percentage contributions for 2020 would range from 1.79 percent to 8.5 percent of income
• Individuals with incomes above 400 percent of FPL would be eligible for tax credit if price of second-lowest-cost silver plan exceeded 8.5 percent of income | • Eliminate tax credit cliff
• Make insurance more affordable |
| **Standard reinsurance** | • Individual-market insurers would be eligible for reinsurance for any enrollee whose annual claims exceed $90,000
• Reinsurance would cover 50 percent of claims between $90,000 and $250,000
• Reinsurance program would be funded by per-enrollee fee on all individual and employer health plans, including self-insured plans
• Parameters based on ACA transitional reinsurance program for 2016 | • Encourage insurer participation
• Reduce premiums |
| **Generous reinsurance** | • Individual-market insurers would be eligible for reinsurance for any enrollee whose annual claims exceed $45,000
• Reinsurance would cover 100 percent of claims between $45,000 and $250,000
• Reinsurance program would be funded by per-enrollee fee on all individual and employer health plans, including self-insured plans
• Parameters based on ACA transitional reinsurance program for 2014 | • Encourage insurer participation
• Reduce premiums |

Notes: APTCs = advance premium tax credits. FPL = federal poverty level. As discussed further in Appendix A, all options have been proposed previously by policymakers. The appendix provides more detail on each option and justification for proposed parameters.

^aIf the applicable percentage contribution exceeds the price of the second-lowest-cost silver plan, the individual does not receive a tax credit.

Data: Analysis based on the RAND COMPARE microsimulation model.
FINDINGS

Changes in Insurance Coverage
Exhibit 2 shows the estimated change in insurance enrollment among nonelderly adults, overall and by source of coverage, under each of the policies considered. All the options would increase total insurance coverage and enrollment in the individual market, relative to current law. The change in total insurance relative to the ACA ranges from an increase of 800,000 individuals with enhanced APTCs for young adults to an increase of 3.4 million individuals under the generous reinsurance scenario. Increases in individual-market enrollment would exceed the increases in overall insurance coverage because some people would move from employer-sponsored insurance (ESI) to the individual market as a result of the policy changes. This shift would be most pronounced in the generous reinsurance scenario, leading to a 2.3 million reduction in ESI enrollment. As modeled, reinsurance in the individual market is funded through a fee on all health plans, including employer plans. The tax increases the cost of employer-sponsored insurance, causing some individuals to change their enrollment decisions.

Effects on Individual-Market Premiums
Incentivizing people to enroll in the individual market could lead healthier people to purchase insurance, causing premiums to fall. Reinsurance would further reduce premiums because it would partially offset the costs of the sickest individuals (see Appendix A for discussion). Exhibit 3 reports the estimated change in individual-market premiums under each policy scenario, relative to current law. We report the change in silver premiums for a 40-year-old. Because of the ACA’s age-rating provision, which allows insurers to charge older adults no more than three times as much as younger adults, the proportional change in premiums would be similar for all age categories. Premium estimates for a broader range of ages can be found in Appendix B. These estimates focus on total insurance premiums, before accounting for tax credits.

Under all the proposed policies, the cost of individual-market premiums would fall. In the first four scenarios, premium changes relative to the ACA would be driven entirely by improvements in the risk pool. These
improvements occur when healthy, low-cost people enroll, reducing average expenditure in the group. Adding enhanced tax credits for young adults would have the smallest effect on age-specific premiums among the policies considered. This is partly because the enhanced tax credit would lead to a relatively small change in enrollment. Additionally, because young adults are charged less than older enrollees, insurers have relatively little to gain if a healthy young adult enrolls. In contrast, because older adults can be charged up to three times as much as younger adults, attracting a healthy older person into the risk pool could have a bigger impact on premiums.

As expected, the declines in premiums would be particularly large in the reinsurance scenarios, because these options directly reduce the cost of insuring those with costly conditions. We estimate that the standard reinsurance scenario would decrease age-specific premiums by approximately 4 percent, while the generous reinsurance scenario would reduce age-specific premiums by 19 percent.

EFFECTS ON FEDERAL DEFICIT

Exhibit 4 shows how the proposed policies would affect the federal deficit. The first four options — enhanced APTCs for young adults, extending APTCs to those with higher incomes, increasing APTCs for the currently eligible population, and both extending and increasing APTCs — would increase the federal deficit relative to current law. These deficit increases would be positively correlated with the size of the newly insured population. For example, enhanced tax credits for young adults, a policy that would increase the number of insured by 800,000 in 2020 (the most modest increase of all the policies), also would have a relatively small impact on the deficit, increasing government costs by a net $2.5 billion. Both extending APTCs and increasing their value, a policy that would increase insurance rolls by 2.6 million, would increase the deficit by $11.8 billion.

The two reinsurance scenarios stand out because they would reduce the federal deficit relative to the ACA.
despite insuring more people. We assume that reinsurance would be funded by a tax on all individual and employer health plans (including self-funded plans), so the program is nearly costless from the federal government’s perspective. Yet, because reinsurance would reduce premiums on the individual market, it would lead to reductions on APTC spending. As a result, we estimate that the standard reinsurance program would reduce the federal deficit by roughly $2.9 billion in 2020, and the generous reinsurance program would reduce the federal deficit by roughly $13.1 billion in the same year.

Exhibit 4 presents results from the federal government’s perspective, and hence may obscure the cost of the policies to taxpayers. We estimate that the per-enrollee health insurance fee needed to fund reinsurance would increase single ESI premiums by $35 per year in the standard scenario, and by $189 per year in the generous scenario. Below, we discuss the cost of the policies from the taxpayers’ perspective.

CHANGE IN TAXPAYER COSTS

The first four policy options would create an implicit cost to taxpayers because they would increase the federal deficit relative to the status quo. While the two reinsurance approaches would reduce the deficit, they would add a new fee on all health insurance plans, including employer-sponsored plans. Although the fee is levied on health plans rather than individuals, economic theory and past evidence suggest that these fees would be passed on to enrollees in the form of higher premiums. In Exhibit 5, we show the estimated ultimate increase in cost to taxpayers, defined as the deficit impact plus any new insurance fees needed to fund the policy. All bars show the change in taxpayer costs relative to the ACA.

By dividing the taxpayer costs estimated in Exhibit 5 by the number of newly insured enrollees, we calculate the taxpayer cost per newly insured individual (Exhibit 6). Based on this metric, enhancing APTCs for young adults would be the most efficient approach, yielding a cost per new enrollee of $3,112. While generous reinsurance would

Exhibit 5. Additional Cost to Taxpayers (in billions), 2020, Modifications to Expand Coverage

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Cost (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance APTCs for young adults</td>
<td>2.5</td>
</tr>
<tr>
<td>Increase APTCs</td>
<td>5.9</td>
</tr>
<tr>
<td>Extend APTCs</td>
<td>4.9</td>
</tr>
<tr>
<td>Increase and extend APTCs</td>
<td>11.8</td>
</tr>
<tr>
<td>Standard reinsurance</td>
<td>3.0</td>
</tr>
<tr>
<td>Generous reinsurance</td>
<td>18.8</td>
</tr>
</tbody>
</table>

Notes: APTCs = advance premium tax credits. The cost to taxpayers is defined as the change in deficit plus any additional insurance fees needed to fund the policy. All bars show the change in taxpayer costs relative to the ACA.

Data: Analysis based on the RAND COMPARE microsimulation model.

Exhibit 6. Taxpayer Cost per New Enrollee, 2020, Modifications to Expand Coverage

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Cost (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance APTCs for young adults</td>
<td>3,112</td>
</tr>
<tr>
<td>Increase APTCs</td>
<td>5,737</td>
</tr>
<tr>
<td>Extend APTCs</td>
<td>3,969</td>
</tr>
<tr>
<td>Increase and extend APTCs</td>
<td>4,448</td>
</tr>
<tr>
<td>Standard reinsurance</td>
<td>3,537</td>
</tr>
<tr>
<td>Generous reinsurance</td>
<td>5,571</td>
</tr>
</tbody>
</table>

Notes: APTCs = advance premium tax credits. Bars show the increase in cost to taxpayers relative to the ACA baseline divided by the number of newly insured individuals relative to the ACA baseline. The cost to taxpayers is the net deficit impact plus any new insurance fees.

Data: Analysis based on the RAND COMPARE microsimulation model.
yield more new enrollees than any other option, it is a less efficient policy, with a taxpayer cost per new enrollee of $5,571.

ALTERNATIVE REINSURANCE SCENARIOS

Because of the federal savings incurred from the reinsurance policies, it would be possible for the federal government to reduce the fees on health plans while achieving gains in insurance. Prior Republican health reform proposals, such as the American Health Care Act and the Better Care Reconciliation Act, included billions of dollars in federal funding for state stability funds that could be used for reinsurance. The finding that reinsurance could reduce APTC outlays creates an additional argument for federal investment in the program; officials from the Centers for Medicare and Medicaid Services used similar logic to justify federal investment in Alaska’s state-run reinsurance program.10

Alternatively, the federal government could use savings from fee-funded reinsurance programs to invest in other priorities. For example, policymakers could counterbalance the new tax on health plan enrollees with other policies aimed at reducing regulations on businesses, such as by reducing the number of firms subject to the ACA’s employer mandate.

Exhibit 7 compares our baseline reinsurance scenarios with two alternative approaches: 1) the federal government investing up to $10 billion in the reinsurance program in 2020, and 2) levying the employer mandate to offer coverage only on firms with 500 or more workers (instead of firms with 50 or more workers, as the ACA now requires). The 500-worker threshold has been proposed by the bipartisan “Problem Solvers” caucus.11 The bottom line from these scenarios is that the reductions in the deficit could be used to reduce reinsurance fees or other taxes. However, the net impact on taxpayers would be somewhat similar, regardless of whether reinsurance is financed through fees on health plans or direct government spending. This is because we assume taxpayers benefit equally from deficit reductions and tax reductions. As a result, a policy that reduces the deficit but requires a new tax (or, in this case, a fee on health plans) is equivalent to a policy that has no deficit impact.

ALTERNATIVE REINSURANCE SCENARIOS: A CLOSER LOOK

One alternative approach to reinsurance would involve the federal government investing up to $10 billion to fully offset the cost of the $6.2 billion standard reinsurance program, so that health insurance fees would not be needed. However, because the $6.2 billion cost of the reinsurance program would outweigh the savings from reduced APTCs, the program would no longer be deficit-reducing. Under the more generous reinsurance policy, health insurance fees would still be needed, because a $10 billion reinsurance investment would not fully offset the $34.1 billion estimated cost of the program. However, the magnitude of the fee would be lower than in the baseline case, and slightly more people would enroll in insurance.

For a second alternative policy, which would levy the employer mandate to offer coverage only on firms with 500 or more employees, we find that — from the federal government’s perspective — the reduction in APTC spending caused by reinsurance would roughly offset the cost of relaxing the employer mandate under a standard reinsurance policy and would be more than sufficient to offset the cost under a generous reinsurance policy. For example, in the generous reinsurance scenario, there would still be a $6.8 billion decrease in the deficit if the employer mandate were relaxed. This analysis suggests that, by adding a reinsurance program funded by a fee on health plan enrollees, the federal government could generate enough savings to invest in other priorities. However, this approach would still require new fees on health plans.
CONCLUSION

Policymakers have many options available to expand coverage in the individual market. In this report, we considered federal investments that would enhance, extend, or increase the tax credits available to enrollees, as well as reinsurance approaches that would lower premiums. On a cost-per-enrollee basis, we find that enhancing tax credits by $50 per month for young adults is the cheapest way to expand coverage. However, this approach would yield only about 800,000 newly covered individuals. By contrast, a generous reinsurance program would extend coverage to 3.4 million people.

The benefits of reinsurance come at a cost to taxpayers. As modeled, the reinsurance options would involve an annual fee on health plans of $35 to $189 for every enrollee, including those with employer insurance. Because reinsurance would lower federal spending on APTCs, adding a reinsurance program would reduce the federal deficit. After accounting for the deficit reduction, the reinsurance approaches modeled in this report would cost taxpayers between $3 billion and $18.8 billion in 2020. Relative to the other policy options, the standard reinsurance program is efficient — leading to a taxpayer cost (reinsurance fees plus deficit impact) of $3,537 per newly insured individual. The generous reinsurance would cost $5,571 per newly insured individual, higher than most other options.

All the policy options discussed in this analysis would lead to improvements in the risk pool by enticing lower-cost people to buy coverage. As a result, they could increase the long-term stability of the individual market. Additionally, all of the policies have design features that could be altered, potentially producing different results. For example, the effect of reinsurance depends on which enrollees are eligible for reinsurance payments and whether insurers must contribute coinsurance. Our standard reinsurance scenario, which covered 50 percent of enrollees' claims between $90,000 and $250,000, would insure less than one-third as many additional people as would our more generous reinsurance scenario. While we did not model alternative permutations of the other reforms examined in this report, these too have design features that could be
altered to produce different results. For example, the size of the enhanced tax credit for young adults could be scaled up or down, and options to extend tax credits to those with modest incomes could include limits (e.g., 700 percent of FPL, or annual income of no more than $84,420 for an individual) or could require larger applicable percentage contributions for those with higher incomes.

Our analysis focused on a subset of options to expand enrollment that would make health insurance more attractive from the consumer’s financial perspective. There are many other options that we did not consider. For example, reinsurance could be combined with changes to tax credits, or changes could be made to health plan design (e.g., to the cost-sharing requirements or scope of covered services). Another set of approaches might encourage enrollment by making consumers more aware of their health insurance options, helping people navigate marketplace websites, providing information about tax credits, and explaining key terms such as deductibles and coinsurance. We believe these additional approaches would complement the approaches we’ve analyzed here.

NOTES

2 There are more than 150 million people with employer health insurance and more than 70 million people with Medicaid plans. The Kaiser Family Foundation reports that 151 million nonelderly people had employer-sponsored insurance in 2015. See *Distribution of the Nonelderly with Employer Coverage by Age* (Henry J. Kaiser Family Foundation, n.d.). The Centers for Medicare and Medicaid Services reported 74.5 million Medicaid and CHIP enrollees as of May 2017. See Medicaid.gov, *July 2017 Medicaid and CHIP Enrollment Data Highlights* (CMS, n.d.). Note that these figures include enrollees age 65 and older.

8 Although, in net, reinsurance reduces spending on APTCs, the federal government pays some or all the reinsurance tax for individuals who receive tax credits.

ABOUT THE AUTHORS

Christine Eibner, Ph.D., is a senior economist at the RAND Corporation and the Paul O’Neill Alcoa Chair in Policy Analysis. Eibner’s recent studies have considered changes in health insurance enrollment since 2013, use of pharmaceuticals among marketplace enrollees compared with employer-insured individuals, and geographic variation in marketplace premiums and cost-sharing. In addition, she has led a series of analyses using the RAND COMParE microsimulation model to assess how changes to the Affordable Care Act could affect key outcomes, including federal spending, Medicaid enrollment, and individual market coverage. Eibner’s research has been published in journals such as Health Affairs, Health Services Research, and the New England Journal of Medicine. She earned her Ph.D. in economics from the University of Maryland and her bachelor’s degree from the College of William and Mary.

Jodi Liu, Ph.D., is an associate policy researcher at the RAND Corporation. Liu has experience using simulation modeling to analyze the effects of health care financing and payment changes on health insurance coverage, household spending, government spending, and provider revenues. Her recent work has involved assessing proposals to repeal and replace the Affordable Care Act, alternative payment models, and policy options for single-payer health care. Liu received her Ph.D. in policy analysis from the Pardee RAND Graduate School, her master’s degree in global disease epidemiology and control from the Johns Hopkins Bloomberg School of Public Health, and degrees in biomedical and chemical engineering from the University of Michigan.

For more information about this brief, please contact:
Christine Eibner, Ph.D.
Senior Economist
RAND Corporation
eibner@rand.org

About the Commonwealth Fund

The mission of the Commonwealth Fund is to promote a high performance health care system. The Fund carries out this mandate by supporting independent research on health care issues and making grants to improve health care practice and policy. Support for this research was provided by the Commonwealth Fund. The views presented here are those of the authors and not necessarily those of the Commonwealth Fund or its directors, officers, or staff.

Editorial support was provided by Martha Hostetter.
APPENDIX A. MODELING APPROACH

COMPARE Overview

COMPARE is a microsimulation model that uses economic theory, nationally representative data, and evidence from past experience to estimate how consumers and business will respond to health policy changes. The model creates a synthetic population of individuals, families, health expenditures, and firms using data from the April 2010 wave of the 2008 Survey of Income and Program Participation, the 2010–2011 Medical Expenditures Panel Survey (MEPS), and the 2009 Kaiser Family Foundation/Health Research and Educational Trust Employer Health Benefits Survey. While the data sources predate the implementation of the ACA, we update them to reflect population growth based on factors reported by the U.S. Census Bureau, and to reflect health care cost growth using the CMS National Health Expenditures Accounts.

We assign each individual in the Survey of Income and Program Participation a spending amount using the spending of a similar individual from the MEPS. We then augment spending imputations with data on high-cost claims from the Society of Actuaries. These adjustments account for the fact that the MEPS underrepresents individuals with high spending.

In COMPARE, individuals' decisions about health insurance enrollment are simulated by algorithms that weigh the costs and benefits of available options, an approach that is referred to by economists as “utility maximization.” The utility-maximization framework accounts for the following:

- premium costs
- anticipated out-of-pocket health care spending
- the value of health care consumption
- the risk of incurring a financially devastating health care bill, and
- any penalties the individual would face by remaining uninsured, including the risk of facing denial or being charged higher premiums at a later date.

Premium costs are adjusted to account for tax credits, if such credits are available to the enrollee. All else being equal, higher premiums reduce an individual’s probability of enrolling in health insurance. In contrast, several factors encourage enrollment, such as a lower risk of catastrophic spending, reduced out-of-pocket spending, the avoidance of penalties, and increases in health care utilization.

In the model, businesses' decisions are simulated by algorithms that consider the value of health insurance to their workers. Tax credits for individual-market coverage and Medicaid eligibility expansions may reduce the value of health insurance to workers, leading firms to drop insurance. However, mandates requiring individuals to enroll in insurance, as well as mandates requiring firms to offer coverage, tend to increase the likelihood that a firm will offer insurance.

We calibrate the model to ensure that it accurately predicts outcomes for years in which complete data exist. As new data emerge, we update the model to reflect this information. For example, we added an adjustment to our Medicaid enrollment algorithm to account for the “welcome mat effect,” whereby people previously eligible but not enrolled sign up because of the ACA. This adjustment is described in more detail below.

The Approach to Modeling the ACA

To model individual and family health insurance enrollment decisions under the ACA, COMPARE uses a utility-maximization approach, in which simulated decision-makers weigh the costs and benefits of available options. The utility-maximization framework accounts for the tax penalty for not purchasing insurance, the value of health care consumption, premium costs, expected out-of-pocket health care spending, and financial risk associated with out-of-pocket spending.

We scale each of these components of utility to dollars and assume that they are additively separable. We further assume that individuals' utilities are separable in consumption and health. The health-related component of the utility function is modeled as follows:

\[U_{ijk} = u(H_{ij}) - E(OOP_{ij}) - p_{ij}^{(H)} - \frac{1}{2} rVAR(OOP_{ij}) - (0.8 \times \text{Penalty}_j) + \text{Calibration}_{jk} \]
Within this equation:

- \(u(H_{ij}) \) is the utility associated with consuming health care services for individual \(i \) under insurance option \(j \).
- \(k \) represents an individual’s demographic group based on age, health status, and income.
- \(OOP_{ij} \) is the out-of-pocket spending expected.
- \(p^{(ji)} \) is the individual’s premium contribution (after adjusting for tax credits), and
- \(r \) is the coefficient of risk aversion.

Possible health insurance enrollment choices \((j) \) under the ACA may include employer coverage, Medicaid or Children’s Health Insurance Program (CHIP) coverage, an ACA-compliant individual-market plan, or another source of coverage. Individuals can also choose to forego insurance. Not all individuals will have access to all forms of coverage. For example, access to Medicaid is contingent on eligibility, and individuals will have access to employer coverage only if they (or their spouse or parent) work for a business that offers insurance.

The \(Penalty \) term represents the tax penalty associated with insurance status \(j \), and it is 0 for all but the uninsured insurance status. We downweight the tax penalty by a factor of 0.8 to capture the fact that, on average, the Internal Revenue Service collects only about 80 percent of taxes owed.

The term \(Calibration_{ij} \) is a factor that adjusts utilities to match enrollment patterns observed in pre-ACA data. The term accounts for nonpecuniary factors that may influence preferences for different types of insurance. Such factors include the convenience associated with enrolling in employer coverage and access constraints associated with Medicaid. Specific modeling strategies for each source of coverage \(j \) are described next.

Small-Group Employer Coverage. Small employers in the model choose whether to offer coverage based on worker preferences and a small set of other factors, including the employer’s industry and whether workers are unionized. Under the ACA, all small firms are part of a single risk pool with guaranteed issue, and restrictions that allow insurers to charge different premiums to different groups based only on age (with three-to-one ratios allowed among older and younger enrollees), geography, family size, tobacco use, and plan generosity.

In the current version of the model, small-group market regulations apply to all firms with 50 or fewer employees, regardless of year. Earlier versions of the model expanded the small-group market to include firms with 100 or fewer workers after 2015, as originally intended by the ACA. We revised the definition because the Protecting Affordable Coverage for Employees Act, signed into law in late 2015, amended the ACA’s definition of a small employer to include firms with one to 50 employees in perpetuity, unless states opt to extend the small-group market to firms with up to 100 workers.

Small firms in the model are permitted to purchase a 60 percent, 70 percent, 80 percent, or 90 percent actuarial value plan on the ACA’s regulated small-group market, which includes the Small Business Health Options Program (SHOP) marketplaces. Small firms in the model may retain grandfathered status, which exempts them from the ACA’s rating regulations, although we assume that a certain percentage of small firms will lose grandfathered status each year.

The ACA also offers a small-business tax credit to small firms with low-wage workers who obtain coverage through the SHOP marketplaces. Because firms can take advantage of these credits for only two years, we assume that all small firms will have exhausted their tax-credit eligibility by 2020 (the year modeled in this analysis).

Large-Group Employer Coverage. Like small employers, large employers choose whether to offer coverage based on worker preferences and several other characteristics, including union status and industry. We allow large firms that offer coverage to choose between four different plans, which are distinguished by plan generosity and rated based on enrollees’ expected health expenditures. We estimate premiums for the large-group market based on a regression. The firm’s decision to offer is modeled using structural econometric techniques.

Medicaid. We model state Medicaid expansion decisions as of January 1, 2017 and include North Carolina as a Medicaid expansion state. We assume that, under the ACA, states with Medicaid eligibility thresholds that exceeded 138 percent of the federal poverty level (FPL) before 2014 will roll back their eligibility thresholds to 138 percent because of federally funded tax credits and cost-sharing subsidies that become available to this group. In states that did not expand Medicaid, individuals who would have qualified for Medicaid expansion and have income above FPL can obtain tax credits on the market-
places. However, those with incomes below FPL are ineligible for tax credits. Through our calibration process, the model accounts for the fact that not all Medicaid-eligible individuals chose to enroll, perhaps because of stigma, lack of information, or transaction costs associated with enrolling. To account for the fact that the ACA increased Medicaid enrollment among the previously eligible population, we increase the calibration parameter by a factor of approximately $200 in the post-2014 period.

Individual Market. Under the ACA, the individual market consists of two components: 1) the insurance market-places where individuals can receive tax credits, and 2) off-marketplace plans that comply with the ACA's rating requirements. Because the ACA requires all plans in the individual market to be rated together, we model on- and off-marketplace plans that are ACA-compliant as a single risk pool. Hence, we do not distinguish between enrollment in on-marketplace plans and off-marketplace plans that comply with the ACA. In the ACA-compliant individual market, modeled individuals and families can purchase plans with a 60 percent, 70 percent, 80 percent, or 90 percent actuarial value, corresponding to bronze, silver, gold, and platinum plans on the marketplaces, respectively. We do not model catastrophic plans, which are available only to those under age 30 or who qualify for a hardship exemption from the individual mandate. According to a 2015 fact sheet published by the Centers for Medicare and Medicaid Services (CMS), less than 1 percent of all marketplace enrollees have selected catastrophic coverage.6

ACA-compliant individual-market premiums are calculated endogenously in the model based on the health expenditure profile of those who choose to enroll. The total, unsubsidized premium is based on enrollees' age, smoking status, and market-rating reforms implemented under the ACA.7 We model three-to-one rate-banding on age for adults ages 21 and older, with a separate age-band for children and young adults under age 21. We also account for the ACA's risk-adjustment requirements, which transfer funds from plans with lower-than-average actuarial risk to plans with higher-than-average actuarial risk.

The U.S. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation (ASPE) reports the average second-lowest-cost silver premium for a 27-year-old to be $296 per month in 2017.8 This compares with our estimate of $341 per month for 2020, which reflects an average of 4.8 percent growth per year from 2017. We do not account for possible changes to the individual market that may occur given uncertainties, such as possible funding cuts to cost-sharing reductions and not enforcing the individual mandate.

Under the ACA, the actual premium an enrollee pays is adjusted to account for tax credits available to qualifying individuals with incomes between 100 percent and 400 percent of FPL who do not have affordable offers of insurance from another source (e.g., employer coverage, Medicaid). We apply the ACA's subsidy formula using the benchmark silver premium and the individual's income. Eligible individuals who have incomes between 100 percent and 250 percent of FPL can also receive cost-sharing subsidies that help to lower out-of-pocket spending. As required by the ACA, individuals receiving cost-sharing subsidies in COMPARE must purchase a silver plan (70 percent actuarial value), and out-of-pocket spending is reduced to an equivalent of 94 percent, 87 percent, or 73 percent actuarial value plan if the individual's income is between 100 percent and 150 percent, 150 percent and 200 percent, or 200 percent and 250 percent of FPL, respectively. Note that out-of-pocket spending enters the individual's utility function; hence, individuals receiving cost-sharing subsidies are more likely to purchase coverage.

Comparison to Congressional Budget Office (CBO) Estimates. We also compared the current COMPARE insurance estimates for 2020 under current law with those of the CBO (Exhibit A1). We consider both CBO's March 2016 baseline, which they used in their estimates of the potential effects of the American Health Care Act, and a subsequent update from January 2017.9 The January update revised downward CBO's estimate of the number of enrollees in the individual market. Although the January update reported only individual-market coverage and the number of uninsured individuals, the text stated that the reduction in estimated individual market enrollment was largely offset by revising upward the number of enrollees in employer-sponsored coverage.

After accounting for these changes, RAND's estimates are very similar to CBO's. One remaining difference is that CBO allows people to have more than one source of health insurance coverage, so the numbers in its 2016 baseline do not sum to population totals. RAND assigns everyone a primary insurance category, and does not account for multiple sources of coverage. This accounting difference may explain why CBO estimates more Medicaid enrollees than does RAND's COMPARE.
Options to Expand Health Insurance Enrollment in the Individual Market

Scenarios Modeled

Enhance APTCs for Young Adults
Under the ACA, individuals and families are eligible for APTCs on the marketplaces if they have incomes between 100 percent and 400 percent of the federal poverty level and no access to an alternative affordable plan through an employer or public source. The APTC amount is equal to the premium for the second-lowest-cost silver plan in the individual's rating area, minus a required percentage contribution that scales with income. For the 2018 plan year, the required percentage contribution will range from 2.01 percent of income for those with incomes between 100 percent and 133 percent of FPL to 9.56 percent of income for those with incomes between 300 percent and 400 percent of FPL.10 The contributions are adjusted over time based on health care cost growth relative to general inflation, and — in 2020 — we estimate that contributions will range from 2.09 percent to 9.95 percent of income.

To model the enhancement, we increase the monthly APTC for eligible enrollees between the ages of 19 and 30 by $50. The enhancement amount scales down linearly for enrollees between the ages of 30 and 35, declining to $0 at age 35. APTC-eligible enrollees in the specified age-range receive the full amount of the enhancement, regardless of their income level, with the caveat that the total credit (original APTC plus enhancement) may not exceed the cost of the second-lowest-cost silver plan available to the enrollee.

Another commonly discussed way to reduce costs for young adults is to enact five-to-one rate banding, a policy that allows insurers to charge older adults up to five times as much as younger adults (under current law, insurers may charge older adults only three times as much as younger adults). In prior work, we found that five-to-one rate banding would lead to slightly larger gains in insurance coverage than would enhanced APTCs for young adults.11 However, it would lead to substantially larger deficit increases than the enhanced APTC approach. This is because five-to-one rate banding would increase premiums for older adults, and hence increase federal APTC spending. It also would cause some older adults to become uninsured.

We modeled this policy, based on suggestions made in 2016 by members of the Obama Administration, in a previous analysis.12

Extend APTCs to All Incomes
To model the expansion of tax credits to individuals with incomes over 400 percent of FPL, we simply extend the tax credits to this population in our model. The change influences the chance of enrolling in the individual market by reducing the premium contribution that the enrollee faces (in the equation shown in the prior section). In addition, the tax credit reduces premium spending for eligible individuals who would have enrolled in the individual market without the tax credit, and increases government spending.

As under current law, we continue to assume that those with affordable employer coverage are ineligible for tax credits. Affordability is defined as having an employer premium contribution for single coverage that is no greater than 9.95 percent of income in 2020. Further, we assume that those with incomes under 100 percent of FPL remain ineligible for tax credits, even if their states opted not to expand Medicaid.13 The possibility of extending tax credits to people with higher incomes has been proposed several times, including by Senators Heidi Heitkamp and Dianne Feinstein.14 We modeled this proposal in a previous report.15

Exhibit A1. Insurance Enrollment by Source of Coverage Under the ACA, CBO and COMPARE, 2020

<table>
<thead>
<tr>
<th></th>
<th>CBO March 2016 (millions)</th>
<th>CBO January 2017 (millions)</th>
<th>COMPARE August 2017 (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total insured</td>
<td>249</td>
<td>—</td>
<td>252.5</td>
</tr>
<tr>
<td>Employer</td>
<td>152</td>
<td>—</td>
<td>155.7</td>
</tr>
<tr>
<td>Medicaid</td>
<td>68</td>
<td>—</td>
<td>62.0</td>
</tr>
<tr>
<td>Individual market</td>
<td>27</td>
<td>21</td>
<td>22.3</td>
</tr>
<tr>
<td>Other</td>
<td>14</td>
<td>—</td>
<td>12.5</td>
</tr>
<tr>
<td>Uninsured</td>
<td>27</td>
<td>28</td>
<td>25.5</td>
</tr>
<tr>
<td>Total population</td>
<td>276</td>
<td>—</td>
<td>278.1</td>
</tr>
<tr>
<td>Share uninsured</td>
<td>9.8%</td>
<td>—</td>
<td>9.2%</td>
</tr>
</tbody>
</table>

Note: Estimates reflect current law (the ACA), assuming the individual mandate is enforced and cost-sharing reductions are funded. CBO’s numbers do not sum to population totals because they allow individuals to be assigned to more than one source of insurance coverage. CBO’s January 2017 update reported estimates only for individual-market coverage and the number uninsured.

Source: CBO estimates from 2016 and 2017.
Increase the Value of APTCs

Under current law, those with incomes between 100 percent and 400 percent of poverty and no other affordable source of coverage are eligible for APTCs, which cap their contribution toward a benchmark health insurance plan on the ACA’s marketplaces. We considered a scenario that would reduce the contribution level for those with incomes between 300 percent and 400 percent of FPL from 9.95 percent to 8.5 percent of income for a benchmark plan, with commensurate reductions for lower-income individuals. To incorporate this change, we adjusted the maximum percentage contributions by a factor of $(8.5/9.95) = 0.8543$. After these adjustments, the percentage contribution amounts ranged from 1.79 percent of income for those with incomes between 100 percent and 138 percent of poverty and no other affordable source of coverage to 8.5 percent of income for those with incomes between 300 percent and 400 percent of poverty. We modeled this policy, which is similar to a proposal Hillary Clinton suggested during the 2016 presidential election campaign, in a previous report.¹⁶

Reinsurance

Reinsurance pays insurers some or all the expenses incurred by enrollees with costly conditions. Reinsurance reduces insurers’ risk of experiencing a catastrophic financial loss. Further, if individual market reinsurance is funded through external sources (e.g., from government investment or through taxes levied outside of the individual market), it reduces the average cost of insuring an individual-market enrollee, leading to lower premiums. Under the ACA, a transitional reinsurance program was available from 2014 to 2016. The reinsurance program was funded by a per capita contribution from individuals covered by individual and employer health plans, including self-insured plans. We consider two reinsurance scenarios. The standard reinsurance scenario is based on the ACA’s 2016 payment parameters: individual-market insurers would be eligible for reinsurance payments for enrollees whose annual claims exceed $90,000; the payments would cover 50 percent of claims between $90,000 and $250,000.¹⁷ The generous reinsurance scenario is based on the ACA’s 2014 payment parameters: individual-market insurers would be eligible for reinsurance payments for enrollees whose annual claims exceed $45,000; the payments would cover 100 percent of claims between $45,000 and $250,000.¹⁸ We used the annual expenditures of individual-market enrollees to calculate the costs of the reinsurance programs.

In the baseline reinsurance scenarios, we assume that the reinsurance program is fully funded by a per capita tax levied on all individual market, group, and self-insured health plan enrollees. In the alternative reinsurance scenario with federal investment, we assume the federal government would contribute up to $10 billion and adjust the per capita tax rate downward to meet the remaining cost of the reinsurance program. In the alternative reinsurance scenario with the employer mandate threshold moved from 50 to 500 employees, we assume the program would be fully funded by the per capita tax without federal investment. To estimate the change in revenue from this scenario, we reduce the employer mandate revenue estimated in the baseline scenario by the change in the number of workers at nonoffering firms subject to the mandate.¹⁹

We estimate that the total cost of the reinsurance programs would range from $6.2 billion in the standard scenario to $34.1 billion in the generous scenario. As modeled, the reinsurance program would be funded through a tax levied on all health plans, including group, self-insured, and nongroup plans. On a per enrollee basis, the tax would be $35 per enrollee in the standard scenario and $189 per enrollee in the generous scenario. Because the tax would be levied on all plans, including marketplace plans, a portion of the tax would be paid by the federal government as part of the APTC. As shown in Exhibit 4 above, the change in federal APTC spending reflects the net effect of the reinsurance tax and the premium reductions caused by the reinsurance program. Despite the new tax, federal spending on APTCs would fall because the additional cost of the reinsurance tax would be more than offset by premium reductions caused by the inflow of reinsurance funding into the nongroup market from taxes on group and self-funded health plans.

When we estimate the total cost of the reinsurance program to taxpayers, we consider the change in the deficit plus the cost of the reinsurance tax to health plan enrollees (Exhibit 5). Because taxes levied on subsidized marketplace plans are incorporated into APTC spending, they are reflected in the deficit change, and need to be removed from the reinsurance tax calculations to avoid double counting. For enrollees who receive APTCs, we model the federal contribution to reinsurance taxes as $\min(\text{Reinsurance Tax}, \text{APTC})$. To calculate the nonfederal cost of the reinsurance program, we subtract these federal payments from the total cost of the reinsurance program. Exhibit A2 reports the total cost of the reinsurance program, and shows the amount incorporated into APTC spending (federal reinsurance payments) and the amount paid by private health plan enrollees. In calculating the cost to taxpayers, we sum the deficit impact and private reinsurance payments.
Differences from Previous Estimates

As mentioned above, we have previously modeled many of the policies considered in this report. While the results presented here are generally similar to our earlier estimates, some numbers have changed slightly because of model updates. The figures in the current report are for calendar year 2020, while several of our prior estimates considered outcomes for 2018 or other years. We have also updated our health care cost inflation factors to reflect the most recent projections from the National Health Expenditure Accounts. These adjustments affect both health care cost estimates as well as the applicable percentage contributions used to calculate tax credit amounts and, for those with access to employer coverage, whether that coverage is affordable. We made a change to the model’s budget constraint, which now precludes individuals with incomes below 400 percent of FPL from spending more than 25 percent of their income on health insurance (previously, this constraint applied only to those with incomes at or below 138 percent of FPL). Finally, for the scenario in which APTCs are extended to those with higher incomes, our deficit effect now includes a small change in employer mandate revenue, which we had not reported in our previous report.

Exhibit A2. Cost of Reinsurance Options (in billions), 2020

<table>
<thead>
<tr>
<th>Total cost of the reinsurance program</th>
<th>Standard reinsurance (policy option 5)</th>
<th>Generous reinsurance (policy option 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard reinsurance payments</td>
<td>$6.23</td>
<td>$34.1</td>
</tr>
<tr>
<td>Generous reinsurance payments</td>
<td>$5.97</td>
<td>$31.9</td>
</tr>
</tbody>
</table>

Notes: APTC = advance premium tax credit. Analysis assumes reinsurance is funded through a per capita tax on all group, nongroup, and self-funded health plans. The federal government bears the majority of the cost of the tax for people who are enrolled in APTC-eligible marketplace plans. The remaining costs are born directly by health plan enrollees.

Data: Analysis based on the RAND COMPARE microsimulation model.
APPENDIX B. SUPPLEMENTAL EXHIBITS

Exhibit B1 shows estimated enrollment by source of coverage under the ACA (current law) and the six policies considered.

In Exhibit B2 we report individual-market silver premiums (for a nonsmoker) by age under current law and under the six policies considered. While premium levels vary across ages, the proportional change in premiums due to each modeled policy is the generally the same because the ACA’s age bands require that premiums vary proportionally across age category. One exception to this rule is that, in the reinsurance scenarios, we assume the health plan fee is the same for all age categories, and is levied after the age rating is applied. Because we assume insurers pass the fee on to consumers in the form of higher premiums, this lump-sum charge causes the proportional effect of reinsurance on premiums to vary slightly across age categories.

Exhibit B2 also shows the change in the enrollee-weighted average premium. Enrollee-weighted average premiums differ from age-specific silver premiums because they incorporate shifts in the age composition of enrollees, changes in the distribution of metal levels selected, and changes in the share of enrollees who are smokers.

Exhibit B1. Nonelderly Health Insurance Enrollment (in millions), 2020, ACA and Modifications to Expand Coverage

<table>
<thead>
<tr>
<th>Premiums</th>
<th>ACA</th>
<th>Enhance APTCs for young adults</th>
<th>Increase APTCs</th>
<th>Extend APTCs</th>
<th>Increase and extend APTCs</th>
<th>Standard reinsurance</th>
<th>Generous reinsurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total insured</td>
<td>252.5</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>2.6</td>
<td>0.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Individual market</td>
<td>22.3</td>
<td>1.0</td>
<td>1.4</td>
<td>1.6</td>
<td>3.4</td>
<td>1.2</td>
<td>5.4</td>
</tr>
<tr>
<td>Employer-sponsored</td>
<td>155.7</td>
<td>-0.1</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.9</td>
<td>-0.4</td>
<td>-2.3</td>
</tr>
<tr>
<td>Medicaid</td>
<td>62.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Other</td>
<td>12.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Uninsured</td>
<td>25.5</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-1.2</td>
<td>-2.6</td>
<td>-0.9</td>
<td>-3.4</td>
</tr>
</tbody>
</table>

Notes: APTCs = advance premium tax credits. Analysis assumes cost-sharing reductions are paid and the individual mandate is enforced. Individual-market plans include plans purchased on and off the marketplaces.

Data: Analysis based on the RAND COMPARE microsimulation model.

Exhibit B2. Individual-Market Premiums, 2020, ACA and Modifications to Expand Coverage

<table>
<thead>
<tr>
<th>Premiums</th>
<th>ACA</th>
<th>Enhance APTCs for young adults</th>
<th>Increase APTCs</th>
<th>Extend APTCs</th>
<th>Increase and extend APTCs</th>
<th>Standard reinsurance</th>
<th>Generous reinsurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver plan, 21-year-old</td>
<td>$3,880</td>
<td>$3,850</td>
<td>($0.8%)</td>
<td>$3,880</td>
<td>($0.1%)</td>
<td>$3,790</td>
<td>($2.3%)</td>
</tr>
<tr>
<td>Silver plan, 30-year-old</td>
<td>$4,570</td>
<td>$4,530</td>
<td>($0.8%)</td>
<td>$4,570</td>
<td>($0.1%)</td>
<td>$4,460</td>
<td>($2.3%)</td>
</tr>
<tr>
<td>Silver plan, 40-year-old</td>
<td>$5,170</td>
<td>$5,130</td>
<td>($0.8%)</td>
<td>$5,160</td>
<td>($0.1%)</td>
<td>$5,040</td>
<td>($2.3%)</td>
</tr>
<tr>
<td>Silver plan, 50-year-old</td>
<td>$7,580</td>
<td>$7,530</td>
<td>($0.8%)</td>
<td>$7,580</td>
<td>($0.1%)</td>
<td>$7,410</td>
<td>($2.3%)</td>
</tr>
<tr>
<td>Silver plan, 60-year-old</td>
<td>$11,130</td>
<td>$11,050</td>
<td>($0.8%)</td>
<td>$11,120</td>
<td>($0.1%)</td>
<td>$10,870</td>
<td>($2.3%)</td>
</tr>
<tr>
<td>Enrollee-weighted average</td>
<td>$6,180</td>
<td>$6,080</td>
<td>($1.6%)</td>
<td>$6,130</td>
<td>($0.7%)</td>
<td>$6,150</td>
<td>($0.5%)</td>
</tr>
</tbody>
</table>

Notes: APTCs = advance premium tax credits. Numbers in parentheses represent percentage changes in premiums relative to the ACA scenario. Premium estimates assume that CSRs are funded, and that the ACA’s individual mandate is enforced. Silver plan premiums are for nonsmokers.

The change in the enrollee-weighted average is different from the change in the age-specific silver premiums for several reasons. First, the enrollee-weighted average reflects changes in enrollment across metal levels. Second, the enrollee-weighted average incorporates changes in the age composition of enrollees, which varies across the policies considered (see Appendix C). Finally, enrollee-weighted average premiums vary depending on the share of smokers in the individual market, an outcome that varies across the scenarios.

Data: Analysis based on the RAND COMPARE microsimulation model.

commonwealthfund.org
APPENDIX C. CHARACTERISTICS OF INDIVIDUAL-MARKET ENROLLEES

In this section, we describe how the characteristics of the insured population change in response to each of the policies considered.

Age Distribution of the Newly Insured

Exhibit C1 shows the number of newly insured individuals, by age group, under each of the policies considered. Not surprisingly, providing enhanced tax credits for young adults primarily affects people ages 18 to 34, with little gain in insurance for other age groups. Extending APTCs to all incomes has a disproportionate effect on enrollees ages 50 to 64. Because older adults can be charged up to three times as much as younger adults for health insurance, they are more likely to have to pay more than 9.95 percent of their income for health insurance, and hence benefit more than younger adults from the tax-credit extension. The generous reinsurance option has the largest effect on enrollment at every age, primarily because this policy leads to substantial reductions in individual-market premiums.

Income Distribution of the Newly Insured

Two of the policies considered — enhancing APTCs for young adults and increasing APTCs for currently eligible enrollees — directly reduce costs only for those with incomes between 139 percent and 400 percent of FPL, or 100 percent and 400 percent of FPL in states that have not expanded Medicaid. In contrast, extending APTCs and adding reinsurance reduce costs primarily for those with incomes above 400 percent of FPL. One policy combines increased tax credits for currently eligible enrollees with extending tax credits to more people. Exhibit C2 shows that policies that reduce premiums for those with incomes above 400 percent of FPL tend to have the biggest effects on overall enrollment. This is because many uninsured individuals with incomes at or below 400 percent FPL already qualify for tax credits, and have chosen not to enroll (hence adding additional tax credits for the lower-income group targets a less-responsive group of individuals).

Exhibit C1. Number of Newly Insured Individuals (in millions), by Age, 2020, Modifications to Expand Coverage

Exhibit C2. Number of Newly Insured Individuals (in millions), by Income, 2020, Modifications to Expand Coverage

Notes: FPL = federal poverty level. APTCs = advance premium tax credits. Exhibit shows the estimated increase in total insurance enrollment, relative to the ACA, by age category, for each of the policy options considered.

Data: Analysis based on the RAND COMPARE microsimulation model.
APPENDIX NOTES

3. Other sources of coverage include Medicare for the nonelderly with qualifying conditions and military-related sources of coverage, such as TRICARE.

12. Ibid.

13. Arguably, it would make more sense to extend tax credits to lower-income individuals, rather than providing additional federal assistance to people with incomes above 400 percent of FPL. However, because extending tax credits to lower-income populations might cause some states to rescind Medicaid expansion, extending tax credits to lower-income individuals may be a less viable policy option than extending them to those with incomes above 400 percent of FPL.

19. Specifically, we multiple the baseline employer mandate revenue by the number of employees at nonoffering firms with more than 500 workers divided by the number of employees at nonoffering firms with more than 50 workers.